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Welcome to the Seventh Edition of Elementary Linear Algebra. 

My primary goal is to present the major concepts of linear 

algebra clearly and concisely. To this end, I have carefully 

selected the examples and exercises to balance theory with 

applications and geometrical intuition. The order and coverage 

of topics were chosen for maximum efficiency, effectiveness,

and balance. The new design complements the multitude of 

features and applications found throughout the book. 

New To This Edition

NEW Chapter Openers
Each Chapter Opener highlights five real-life applications 

of linear algebra found throughout the chapter. Many of the 

applications reference the new Linear Algebra Applied featured 

(discussed below). You can find a full listing of the applications 

in the Index of Applications on the inside front cover.

NEW Linear Algebra Applied
Linear Algebra Applied describes a real-life application 

of concepts discussed in a section. These applications include

biology and life sciences, business and economics,

engineering and technology, physical sciences, and statistics

and probability.

NEW Capstone Exercises
The Capstone is a conceptual problem that synthesizes 

key topics to check students’ understanding of the section

concepts. I recommend it.

ix

Preface



REVISED Exercise Sets
The exercise sets have been carefully and extensively

examined to ensure they are rigorous, relevant, and 

cover all topics suggested by our users. The exercises

have been reorganized and titled so you can better 

see the connections between examples and exercises.

Many new skill building, challenging, and application

exercises have been added. As in earlier editions, the 

following pedagogically-proven types of exercises 

are included:

• True or False Exercises ask students to give examples

or justifications to support their conclusions.

• Proofs

• Guided Proofs lead student through the initial steps

of constructing proofs and then utilizing the results.

• Writing Exercises

• Technology Exercises are indicated throughout 

the text with .

• Exercises utilizing electronic data sets are indicated

by and found at www.cengagebrain.com.

Table of Contents Changes
Based on feedback from users, Section 3.4

(Introduction to Eigenvalues) in the previous 

edition has been removed and its content has 

been absorbed in Chapter 7 (Eigenvalues and

Eigenvectors). 

Trusted Features

Section Objectives
A bulleted list of learning objectives provides you

the opportunity to preview what will be presented

in the upcoming section. For the Seventh Edition,

the section objectives are located by relevance at

the beginning of each section.

Theorems, Definitions, and Properties
Presented in clear and mathematically precise 

language, all theorems, definitions, and properties

are highlighted for emphasis and easy reference.

x Preface



Proofs in Outline Form
In addition to proofs in the exercises, some 

proofs are presented in outline form, omitting 

the need for burdensome calculations.

Discovery
Discovery helps you develop an intuitive 

understanding of mathematical concepts and 

relationships.

Technology Notes
Technology notes show how you can use graphing 

utilities and software programs appropriately in the 

problem-solving process. Many of the technology 

notes reference the Online Technology Guide,

located at www.cengagebrain.com.

Chapter Projects
Two per chapter, these offer the opportunity 

for group activities or more extensive homework 

assignments, and are focused on theoretical 

concepts or applications. Many encourage the 

use of technology.

Preface xi
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2 Chapter 1 Systems of Linear Equations

1.1 Introduction to Systems of Linear Equations

Recognize a linear equation in variables.

Find a parametric representation of a solution set.

Determine whether a system of linear equations is consistent or

inconsistent.

Use back-substitution and Gaussian elimination to solve a system

of linear equations.

LINEAR EQUATIONS IN VARIABLES

The study of linear algebra demands familiarity with algebra, analytic geometry,

and trigonometry. Occasionally, you will find examples and exercises requiring a

knowledge of calculus; these are clearly marked in the text.

Early in your study of linear algebra, you will discover that many of the solution 

methods involve multiple arithmetic steps, so it is essential to check your work. Use 

a computer or calculator to check your work and perform routine computations.

Although you will be familiar with some material in this chapter, you should 

carefully study the methods presented in this chapter. This will cultivate and clarify

your intuition for the more abstract material that follows.

Recall from analytic geometry that the equation of a line in two-dimensional space

has the form

and are constants.

This is a linear equation in two variables and . Similarly, the equation of a plane

in three-dimensional space has the form

and are constants.

This is a linear equation in three variables , , and . In general, a linear equation in

variables is defined as follows.

Linear equations have no products or roots of variables and no variables involved 

in trigonometric, exponential, or logarithmic functions. Variables appear only to the

first power. 

Linear and Nonlinear Equations

Each equation is linear.

a. b. c.

Each equation is not linear.

a. b. c. sin x1 1 2x 2 2 3x3 5 0ex 2 2y 5 4xy 1 z 5 2

ssin pd x1 2 4x2 5 e21
2x 1 y 2 pz 5 !23x 1 2y 5 7

n

zyx

ba1, a2, a3,a1x 1 a2y 1 a3z 5 b,

yx

ba1, a2,a1x 1 a2y 5 b,

n

n

Definition of a Linear Equation in Variables

A linear equation in variables has the form

The coefficients are real numbers, and the constant term

is a real number. The number is the leading coefficient, and is the 

leading variable.

x1a1

ba1, a2, a3, .  .  . , an

a1x1 1 a2x 2 1 a3x3 1 .  .  . 1 anxn 5 b.

x1, x 2, x3, .  .  . , xnn

n
REMARK

Letters that occur early in the

alphabet are used to represent

constants, and letters that

occur late in the alphabet are

used to represent variables.



SOLUTIONS AND SOLUTION SETS

A solution of a linear equation in variables is a sequence of real numbers 

arranged to satisfy the equation when you substitute the values

into the equation. For example, and satisfy the equation 

Some other solutions are and and and and

The set of all solutions of a linear equation is called its solution set, and when you

have found this set, you have solved the equation. To describe the entire solution set of

a linear equation, use a parametric representation, as illustrated in Examples 2 and 3.

Parametric Representation of a Solution Set

Solve the linear equation 

SOLUTION

To find the solution set of an equation involving two variables, solve for one of the 

variables in terms of the other variable. Solving for in terms of you obtain

In this form, the variable is free, which means that it can take on any real value. The

variable is not free because its value depends on the value assigned to To represent

the infinitely many solutions of this equation, it is convenient to introduce a third variable

called a parameter. By letting you can represent the solution set as

is any real number.

To obtain particular solutions, assign values to the parameter For instance,

yields the solution and and yields the solution 

and 

To parametrically represent the solution set of the linear equation in Example 2 

another way, you could have chosen to be the free variable. The parametric 

representation of the solution set would then have taken the form

is any real number.

For convenience, choose the variables that occur last in a given equation to be free 

variables.

Parametric Representation of a Solution Set

Solve the linear equation 

SOLUTION

Choosing and to be the free variables, solve for to obtain 

Letting and you obtain the parametric representation

where and are any real numbers. Two particular solutions are 

and x 5 1, y 5 1, z 5 2.x 5 1, y 5 0, z 5 0

ts

z 5 ty 5 s,x 5 1 2
2
3 s 1

1
3 t,

z 5 t,y 5 s

 x 5  1 2  
2
3 y 1  

1
3z.

 3x 5  3 2  2y 1  z

xzy

3x 1 2y 2 z 5 3.

sx 2 5 2 2
1
2 s,x1 5 s,

x1

x 2 5 4.

x1 5 24t 5 4x 2 5 1,x1 5 2

t 5 1t.

tx 2 5 t,x1 5 4 2 2t,

x 2 5 t,t

x 2.x1

x 2

x1 5 4 2 2x 2.

x 2,x1

x1 1 2x 2 5 4.

x 2 5 3.

x1 5 22x 2 5 2,x1 5 0x 2 5 4,x1 5 24

x1 1 2x 2 5 4.x2 5 1x1 5 2

x n 5 sn.  .  .  ,x 3 5 s3,x 2 5 s2,x1 5 s1,

s3, .  .  . , sn

s1, s2,nn

1.1 Introduction to Systems of Linear Equations 3



SYSTEMS OF LINEAR EQUATIONS

A system of linear equations in variables is a set of equations, each of which

is linear in the same variables:

A solution of a system of linear equations is a sequence of numbers

that is a solution of each of the linear equations in the system. For

example, the system

has and as a solution because and satisfy both

equations. On the other hand, and is not a solution of the system because

these values satisfy only the first equation in the system.

x 2 5 0x1 5 1

x 2 5 3x1 5 21x 2 5 3x1 5 21

3x1

2x1

1

1

2x2

x2

5

5

3

4

s1, s2, s3, .  .  . , sn

a11x1 1

a21x1 1

a31x1 1

am1x1 1

a12x2 1

a22x2 1

a32x2 1

am2x2 1

a13x3 1

a23x3 1

a33x3 1

am3x3 1

 .  .  . 1

 .  .  . 1

 .  .  . 1

 .  .  . 1

a1nxn 5

a2nxn 5

a3nxn 5

:  

amnxn 5

b1 

b2 

b3 

bm.

n

mnm
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REMARK
The double-subscript notation

indicates is the coefficient 

of in the th equation.ixj

ai j

Graph the two lines

in the -plane. Where do they intersect? How many solutions does

this system of linear equations have?

Repeat this analysis for the pairs of lines

and

What basic types of solution sets are possible for a system of two

equations in two unknowns?

3x 2

6x 2

y 5

2y 5

1

2.

3x 2 y 5 1

3x 2 y 5 0

xy

3x 2 y 5

2x 2 y 5

1

0

D I S C O V E RY

LINEAR 
ALGEBRA 
APPLIED

In a chemical reaction, atoms reorganize in one or more

substances. For instance, when methane gas 

combines with oxygen and burns, carbon dioxide

and water form. Chemists represent this

process by a chemical equation of the form

Because a chemical reaction can neither create nor destroy

atoms, all of the atoms represented on the left side of the

arrow must be accounted for on the right side of the arrow.

This is called balancing the chemical equation. In the given

example, chemists can use a system of linear equations 

to find values of and that will balance the

chemical equation. 

x4x3,x2,x1,

sx1dCH4 1 sx2dO2 → sx3dCO2 1 sx4dH2O.

sH2OdsCO2d
sO2d

sCH4d

Elnur/www.shutterstock.com



It is possible for a system of linear equations to have exactly one solution,

infinitely many solutions, or no solution. A system of linear equations is consistent

when it has at least one solution and inconsistent when it has no solution.

Systems of Two Equations in Two Variables

Solve and graph each system of linear equations.

a. b. c.

SOLUTION

a. This system has exactly one solution, and One way to obtain 

the solution is to add the two equations to give which implies 

and so The graph of this system is two intersecting lines, as shown in

Figure 1.1(a).

b. This system has infinitely many solutions because the second equation is the result

of multiplying both sides of the first equation by 2. A parametric representation of

the solution set is 

is any real number.

The graph of this system is two coincident lines, as shown in Figure 1.1(b).

c. This system has no solution because the sum of two numbers cannot be 3 and 1

simultaneously. The graph of this system is two parallel lines, as shown in

Figure 1.1(c).

a. Two intersecting lines: b. Two coincident lines: c. Two parallel lines:

Figure 1.1

Example 4 illustrates the three basic types of solution sets that are possible for a 

system of linear equations. This result is stated here without proof. (The proof is 

provided later in Theorem 2.5.)

x 1

x 1

y 5

y 5

3

1

x 1

2x 1

y 5

2y 5

3

6

x 1

x 2

y 5

y 5

3

21

1

2

3

1 2 3
x

y

−1

−1

1

2

3

1 2 3
x

y

1

2

3

4

1 2 3
x

y

−1

ty 5 t,x 5 3 2 t,

y 5 2.

x 5 12x 5 2,

y 5 2.x 5 1

x 1

x 1

y 5

y 5

3

1

x 1

2x 1

y 5

2y 5

3

6

x 1

x 2

y 5

y 5

3

21
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Number of Solutions of a System of Linear Equations

For a system of linear equations, precisely one of the following is true.

1. The system has exactly one solution (consistent system).

2. The system has infinitely many solutions (consistent system).

3. The system has no solution (inconsistent system).



SOLVING A SYSTEM OF LINEAR EQUATIONS

Which system is easier to solve algebraically?

The system on the right is clearly easier to solve. This system is in row-echelon form,

which means that it has a “stair-step” pattern with leading coefficients of 1. To solve

such a system, use a procedure called back-substitution.

Using Back-Substitution in Row-Echelon Form

Use back-substitution to solve the system.

Equation 1

Equation 2

SOLUTION

From Equation 2, you know that . By substituting this value of into Equation 1,

you obtain

Substitute

Solve for

The system has exactly one solution: and 

The term back-substitution implies that you work backwards. For instance,

in Example 5, the second equation gives you the value of Then you substitute 

that value into the first equation to solve for Example 6 further demonstrates this 

procedure.

Using Back-Substitution in Row-Echelon Form

Solve the system.

Equation 1

Equation 2

Equation 3

SOLUTION

From Equation 3, you know the value of To solve for substitute into 

Equation 2 to obtain

Substitute 2 for 

Solve for 

Then, substitute and in Equation 1 to obtain

Substitute and 2 for 

Solve for 

The solution is and 

Two systems of linear equations are equivalent when they have the same solution

set. To solve a system that is not in row-echelon form, first convert it to an equivalent

system that is in row-echelon form by using the operations listed on the next page.

z 5 2.y 5 21,x 5 1,

x. x 5 1.

z.21 for y x 2 2s21d 1 3s2d 5 9

z 5 2y 5 21

y. y 5  21.

z. y 1 3s2d 5  5

z 5 2y,z.

     z 5  2

   y 1  3z 5  5

 x 2  2y 1  3z 5  9

x.

y.

y 5 22.x 5 1

x. x 5 1.

22 for y. x 2 2s22d 5 5

yy 5 22

 y 5  22

x 2  2y 5  5

x 2 2y

y

1

1

3z

3z

z

5

5

5

9

5

2

x

2x

2x

2

1

2

2y

3y

5y

1

1

3z

5z

5

5

5

9

24

17
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Rewriting a system of linear equations in row-echelon form usually involves 

a chain of equivalent systems, each of which is obtained by using one of the three 

basic operations. This process is called Gaussian elimination, after the German 

mathematician Carl Friedrich Gauss (1777–1855). 

Using Elimination to Rewrite 
a System in Row-Echelon Form

Solve the system.

SOLUTION

Although there are several ways to begin, you want to use a systematic procedure 

that is easily applicable to large systems. Work from the upper left corner of the 

system, saving the at the upper left and eliminating the other -terms from the 

first column.

Now that you have eliminated all but the first from the first column, work on the 

second column.

This is the same system you solved in Example 6, and, as in that example, the solution is

Each of the three equations in Example 7 represents a plane in a three-dimensional

coordinate system. Because the unique solution of the system is the point

the three planes intersect at this point, as shown in Figure 1.2.

sx, y, zd 5 s1, 21, 2d

z 5 2.y 5 21,x 5 1,

     z 5  2

   y 1  3z 5  5

 x 2  2y 1  3z 5  9

     2z 5  4

   y 1  3z 5  5

 x 2  2y 1  3z 5  9

x

   2y 2  z 5  21

   y 1  3z 5  5

 x 2  2y 1  3z 5  9

 2x 2  5y 1  5z 5  17

   y 1  3z 5  5

 x 2  2y 1  3z 5  9

xx

 2x 2  5y 1  5z 5  17

 2x 1  3y   5  24

 x 2  2y 1  3z 5  9

1.1 Introduction to Systems of Linear Equations 7

Operations That Produce Equivalent Systems

Each of the following operations on a system of linear equations produces an

equivalent system.

1. Interchange two equations.

2. Multiply an equation by a nonzero constant.

3. Add a multiple of an equation to another equation.

Adding the first equation to 
the second equation produces 
a new second equation.

Adding times the first
equation to the third equation
produces a new third equation.

22

Multiplying the third equation
by produces a new third
equation.

1
2

Adding the second equation to
the third equation produces
a new third equation.

Figure 1.2

x

y

z

(1, −1, 2)

−x + 3y = −4

2x − 5y + 5z = 17

x − 2y +3z = 9

Carl Friedrich Gauss
(1777–1855)

German mathematician Carl
Friedrich Gauss is recognized,
with Newton and Archimedes,
as one of the three greatest
mathematicians in history.
Gauss used a form of what 
is now known as Gaussian 
elimination in his research.
Although this method was
named in his honor, the Chinese
used an almost identical method
some 2000 years prior to Gauss.

Bettmann/Corbis



Because many steps are required to solve a system of linear equations, it is very

easy to make arithmetic errors. So, you should develop the habit of checking your 

solution by substituting it into each equation in the original system. For instance,

in Example 7, you can check the solution and as follows.

Equation 1:

Equation 2:

Equation 3:

The next example involves an inconsistent system—one that has no solution. The

key to recognizing an inconsistent system is that at some stage of the elimination

process, you obtain a false statement such as 

An Inconsistent System

Solve the system.

SOLUTION

(Another way of describing this operation is to say that you subtracted the first 

equation from the third equation to produce a new third equation.) 

Because is a false statement, this system has no solution. Moreover,

because this system is equivalent to the original system, the original system also has 

no solution.

As in Example 7, the three equations in

Example 8 represent planes in a three-dimensional

coordinate system. In this example, however, the

system is inconsistent. So, the planes do not have a

point in common, as shown in Figure 1.3.

0 5 22

     0 5  22

   5x2 2  4x3 5  0

 x1 2  3x2 1  x3 5  1

   5x2 2  4x3 5  22

   5x2 2  4x3 5  0

 x1 2  3x2 1  x3 5  1

 x1 1  2x2 2  3x3 5  21

   5x2 2  4x3 5  0

 x1 2  3x2 1  x3 5  1

 x1 1  2x2 2  3x3 5  21

 2x1 2  x2 2  2x3 5  2

 x1 2  3x2 1  x3 5  1

0 5 22.

 2s1d 2  5s21d  1  5s2d 5  17

 2s1d 1  3s21d      5  24

 s1d 2  2s21d 1  3s2d 5  9

z 5 2y 5 21,x 5 1,

8 Chapter 1 Systems of Linear Equations

x2x1

x3

2x1 − x2 − 2x3 = 2

x1 + 2x2 − 3x3 = −1

x1 − 3x2 + x3 = 1

Figure 1.3

Substitute solution in
each equation of the
original system.

Adding times the first
equation to the second equation
produces a new second equation.

22

Adding times the first
equation to the third equation
produces a new third equation.

21

Adding times the second
equation to the third equation
produces a new third equation.

21



This section ends with an example of a system of linear equations that has infinitely

many solutions. You can represent the solution set for such a system in parametric form,

as you did in Examples 2 and 3.

A System with Infinitely Many Solutions

Solve the system.

SOLUTION

Begin by rewriting the system in row-echelon form, as follows.

Because the third equation is unnecessary, omit it to obtain the system shown below.

To represent the solutions, choose to be the free variable and represent it by the 

parameter Because and you can describe the solution set as

is any real number.tx3 5 t,x2 5 t,x1 5 3t 2 1,

x1 5 3x3 2 1,x 2 5 x3t.

x 3

x1        

x2

2

2

3x3 5

x3 5

21

0

         0 5  0

     x2 2  x3 5  0

 x1      2  3x3 5  21

     3x2 2  3x3 5  0

     x2 2  x3 5  0

 x1      2  3x3 5  21

 2x1 1  3x2     5  1

     x2 2  x3 5  0

 x1      2  3x3 5  21

x1

2x1 1

x2

3x2

2

2

x3

3x3

5

5

5

0

21

1

1.1 Introduction to Systems of Linear Equations 9

Interchange the first 
two equations.

Adding the first equation to the
third equation produces a new
third equation.

Adding times the second
equation to the third equation
eliminates the third equation.

23

Graph the two lines represented by the system of equations.

Use Gaussian elimination to solve this system as follows.

Graph the system of equations you obtain at each step of this

process. What do you observe about the lines? 

You are asked to repeat this graphical analysis for other systems in

Exercises 89 and 90.

x 5

y 5

3

1

x 2 2y

y

5

5

1

1

x 2 2y

21y

5

5

1

21

x 2 2y 5

22x 1 3y 5

1

23
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1.1 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

Linear Equations In Exercises 1–6, determine

whether the equation is linear in the variables and 

1. 2.

3. 4.

5. 6.

Parametric Representation In Exercises 7–10, find 

a parametric representation of the solution set of the 

linear equation.

7. 8.

9.

10.

Graphical Analysis In Exercises 11–24, graph the 

system of linear equations. Solve the system and 

interpret your answer.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

Back-Substitution In Exercises 25–30, use back-

substitution to solve the system.

25. 26.

27. 28.

29. 30.

Graphical Analysis In Exercises 31–36, complete the

following for the system of equations.

(a) Use a graphing utility to graph the system.

(b) Use the graph to determine whether the system is 

consistent or inconsistent.

(c) If the system is consistent, approximate the solution.

(d) Solve the system algebraically.

(e) Compare the solution in part (d) with the 

approximation in part (c). What can you conclude?

31. 32.

33. 34.

35. 36.

System of Linear Equations In Exercises 37–56, solve

the system of linear equations.

37. 38.

39. 40.

41. 42.

43.

44.

45.

46.

47. 48.

49.

50.

 x1 2  11x2 1  4x3 5  3

 2x1 1  4x2 2  x3 5  7

 5x1 2  3x2 1  2x3 5  3

 2x1 2  3x2 1  6x3 5  8

 x1 1  x2 2  2x3 5  3

 3x1 2  2x2 1  4x3 5  1

 4x 1  y   5  4 3x   2  z 5  0

 2x 1  3y 1  2z 5  8 2x 2  y 1  z 5  3

 x 1  y 1  z 5  2 x 1  y 1  z 5  6

 0.07x1 1  0.02x 2 5  0.17

 0.05x1 2  0.03x2 5  0.21

 0.03x1 1  0.04x2 5  0.52

 0.02x1 2  0.05x2 5  20.19

 3x1 2 x2 5  22

 
x1 1 4

3
1

x2 1 1

2
5  1

 x 2 3y 5 20

 
x 2 2

4
1

y 2 1

3
5 2

 4x1 1  x 2 5  0 
1
5x 1  

2
5y 5  2

1
3

 
2
3x1 1  

1
6x 2 5  0 9x 2  3y 5  21

 6x1 1  2x2 5  0 u 1  2v 5  120

 x1 2  2x2 5  0 2u 1  v 5  120

 6x 1  4y 5  14 3x1 2  2x2 5  21

 3x 1  2y 5  2 x1 2  x 2 5  0

25.3x 1

15.9x 2

2.1y 5

6.3y 5

1.25

23.75

4x 2

0.8x 2

8y 5

1.6y 5

9

1.8

 
1
2x 1  

1
3 y 5 0 

1
2x 1  y 5 0

 9x 2  4y 5 5 2x 2  8y 5 3

 28x 1  10y 5  14 6x 1  2y 5 1

 4x 2  5y 5  3 23x 2  y 5 3

x1 1 x2 1 x3 5 0

x2             5 0

5x1

2x1

1

1

2x2

x2

1 x3 5

5

0

0

x 2 y

2y 1 z

3z

5 4

5 6

5 6

2x 1 y

2y

2

1

z

z
1
2z

5 0

5 3

5 0

     3x2 5  9     x2 5  3

 2x1 2  4x2 5  6 x1 2  x2 5  2

2x

3
1

4x 1

y

6
5

y 5

2

3

4

x

4
1

y

6
5

x 2 y 5

1

3

0.2x 2 0.5y 5

0.3x 1 0.4y 5

227.8

68.7

0.05x 2 0.03y 5

0.07x 1 0.02y 5

0.07

0.16

x 2 1

2
1

y 1 2

3
5

x 2 2y 5

4

5

x 1 3

4
1

y 2 1

3
5

2x 2 y 5

1

12

x

6x

2

1

5y

5y

5

5

21

21

2x

5x

2

2

y

y

5

5

5

11

2x

4x

1

1

3y

3y

5

5

17

7

3x

2x

2

1

5y

y

5

5

7

9

1
2x

22x

2

1

1
3y

4
3y

5

5

1

24

x

22x

2

1

y

2y

5

5

1

5

x

2x

1

1

3y

2y

5

5

2

3

2x

x

1

2

y

y

5

5

4

2

13x1 2 26x2 1 39x3 5 13

x 1 y 1 z 5 1

3x 2
1
2 y 5 92x 2 4y 5 0

ssin 2d x 2 y 5 142 sin x 2 y 5 14

x2 1 y2 5 4
3

y
1

2

x
2 1 5 0

3x 2 4xy 5 02x 2 3y 5 4

y.x

The symbol indicates an exercise in which you are instructed to use a graphing utility or

a symbolic computer software program.



1.1 Exercises 11

51.

52.

53.

54.

55.

56.

System of Linear Equations In Exercises 57–60, use 

a software program or a graphing utility to solve the 

system of linear equations.

57.

58.

59.

60.

Number of Solutions In Exercises 61–64, state why

the system of equations must have at least one solution.

Then solve the system and determine whether it has

exactly one solution or infinitely many solutions.

61. 62.

63. 64.

65. Nutrition One eight-ounce glass of apple juice and

one eight-ounce glass of orange juice contain a total of

177.4 milligrams of vitamin C. Two eight-ounce glasses

of apple juice and three eight-ounce glasses of orange

juice contain a total of 436.7 milligrams of vitamin C.

How much vitamin C is in an eight-ounce glass of each

type of juice?

66. Airplane Speed Two planes start from Los Angeles

International Airport and fly in opposite directions. The

second plane starts hour after the first plane, but its

speed is 80 kilometers per hour faster. Find the airspeed

of each plane if 2 hours after the first plane departs, the

planes are 3200 kilometers apart.

True or False? In Exercises 67 and 68, determine

whether each statement is true or false. If a statement is

true, give a reason or cite an appropriate statement from

the text. If a statement is false, provide an example that

shows the statement is not true in all cases or cite an

appropriate statement from the text.

67. (a) A system of one linear equation in two variables is

always consistent.

(b) A system of two linear equations in three variables

is always consistent.

(c) If a linear system is consistent, then it has infinitely 

many solutions.

68. (a) A linear system can have exactly two solutions.

(b) Two systems of linear equations are equivalent

when they have the same solution set.

(c) A system of three linear equations in two variables

is always inconsistent.

69. Find a system of two equations in two variables, and

that has the solution set given by the parametric 

representation and where is any

real number. Then show that the solutions to the system

can also be written as

and

70. Find a system of two equations in three variables,

and that has the solution set given by the

parametric representation

and

where and are any real numbers. Then show that the 

solutions to the system can also be written as 

and x3 5 t.x2 5 s,x1 5 3 1 s 2 t,

ts

x3 5 3 1 s 2 tx2 5 s,x1 5 t,

x3,x2,x1,

x2 5 t.x1 5
4

3
1

t

3

tx2 5 3t 2 4,x1 5 t

x2,

x1

1
2

12x

12x

1

1

5y

4y

1

2

z

z

5

5

0

0

5x

10x

5x

1

1

1

5y

5y

15y

2

1

2

z

2z

9z

5

5

5

0

0

0

2x 1 3y

4x 1 3y

8x 1 3y

2

1

z

3z

5 0

5 0

5 0

4x 1 3y

5x 1 4y

4x 1 2y

1

1

1

17z

22z

19z

5 0

5 0

5 0

 
1
5x 1  

1
4 y 2  

1
3 z 1  

1
2w 5  1

 
1
6x 2  

1
5 y 1  

1
4 z 2  

1
3w 5  1

 
1
7x 1  

1
6 y 2  

1
5 z 1  

1
4w 5  1

 
1
8x 2  

1
7 y 1  

1
6z 2  

1
5w 5  1

 
4
5x1 2  

1
8x2 1  

4
3x3 5

139
150

 
2
3x1 1  

4
9x2 2  

2
5x3 5 2

19
45

 
1
2x1 2  

3
7x2 1  

2
9x3 5

349
630

 88.1x 1 72.5y 2 28.5z 5  225.88

 56.8x 2 42.8y 1 27.3z 5  271.44

 120.2x 1 62.4y 2 36.5z 5  258.64

 0.25x1 1  0.2x2 1  0.17x3 1  0.14x4 5  1.4

 0.33x1 1  0.25x2 1  0.2x3 1  0.17x4 5  1.3

 0.5x1 1  0.33x2 1  0.25x3 1  0.21x4 5  1.2

 x1 1  0.5x2 1  0.33x3 1  0.25x4 5  1.1

x1

2x1 2

2x2

3x2

x2

2

1

x3

4x3

1

2

2

3x4

x4

2x4

5

5

5

5

4

0

1

5

x 1

2x 1

23x 1

x 1

y

3y

4y

2y

1 z

1 z

2 z

1

2

1

1

w

w

2w

w

5 6

5 0

5 4

5 0

 3x1 1  2x2 2  x3 5  22

 x1 2  2x2 1  5x3 5  2

 5x 2  15y 1  10z 5  18

 x 2  3y 1  2z 5  18

 2x1 2  2x2 2  7x3 5  219

 4x1 2  2x2 1  x3 5  7

 x1   1  4x3 5  13

 22x1 1  3x 2 2  13x3 5  28

 4x1   1  2x3 5  10

 2x1 1  x2 2  3x3 5  4

The symbol indicates that electronic data sets for these exercises are available 

at www.cengagebrain.com. These data sets are compatible with each of the following 

technologies: MATLAB, Mathematica, Maple, TI-83 Plus, TI-84 Plus, TI-89, Voyage 200.
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Substitution In Exercises 71–74, solve the system of

equations by letting and 

71. 72.

73. 74.

Trigonometric Coefficients In Exercises 75 and 76,

solve the system of linear equations for and 

75.

76.

Coefficient Design In Exercises 77–82, determine the

value(s) of such that the system of linear equations has

the indicated number of solutions.

77. Infinitely many solutions

78. Infinitely many solutions

79. Exactly one solution

80. No solution

81. No solution

82. Exactly one solution

83. Determine the values of such that the system of linear 

equations does not have a unique solution.

85. Writing Consider the system of linear equations in 

and 

Describe the graphs of these three equations in the 

-plane when the system has (a) exactly one solution,

(b) infinitely many solutions, and (c) no solution.

86. Writing Explain why the system of linear equations

in Exercise 85 must be consistent when the constant

terms and are all zero.

87. Show that if for all then

88. Consider the system of linear equations in and 

Under what conditions will the system have exactly one

solution?

Discovery In Exercises 89 and 90, sketch the lines 

represented by the system of equations. Then use

Gaussian elimination to solve the system. At each step of

the elimination process, sketch the corresponding lines.

What do you observe about the lines?

89. 90.

Writing In Exercises 91 and 92, the graphs of the two

equations appear to be parallel. Solve the system of

equations algebraically. Explain why the graphs are 

misleading.

91. 92.

−10 10 20

10

20

y

x
−1−3 1 2 3 4

−3
−4

1

3
4

y

x

21x 2 20y 5

13x 2 12y 5

0    

120    

100y 2 x 5

99y 2 x 5

200

2198

 24x 1  6y 5  214 5x 2  6y 5  13

 2x 2  3y 5  7 x 2  4y 5  23

cx 1 dy 5 f

ax 1 by 5 e

y.x

a 5 b 5 c 5 0.

x,ax 2 1 bx 1 c 5 0

c3c2,c1,

xy

a3x 1 b3y 5 c3

a2x 1 b2y 5 c2

a1x 1 b1y 5 c1

y.

x

 kx 1  y 1  z 5  1

 x 1  ky 1  z 5  2

 x 1  y 1  kz 5  3

k

 2x 2  y 1  z 5  1

 x 1  y 1  z 5  0

 kx 1  2ky 1  3kz 5  4k

 3x 1  6y 1  8z 5  4

 x 1  2y 1  kz 5  6

 kx 1  y 5  4

 x 1  ky 5  2

 kx 1  y 5  0

 x 1  ky 5  0

 2x 2  3y 5  212

 kx 1  y 5  4

 kx 1  y 5  23

 4x 1  ky 5   6

k

 s2sin udx 1  scos udy 5 1

 scos udx 1  ssin udy 5 1

 s2sin udx 1  scos udy 5 0

 scos udx 1  ssin udy 5 1

y.x

2

x

3

x

2

x

1

2

1

1

y

4

y

1

y

2

1

2

z

3

z

5

5

5

5

21

02
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x

4
x

2

x

1

1

1

y

3

y

2

1

2

3

z

2

z

13

z

5

5
 

5

4

10

28
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x
1

3

y
5

3

x
2

4

y
5

0

2
25

6

12

x
2

12

y
5

3

x
1

4

y
5

7

0

C 5 1/z.B 5 1/y,A 5 1/x, 84. Find values of and such

that the system of linear equations has (a) exactly

one solution, (b) infinitely many solutions, and 

(c) no solution. Explain your reasoning.

 2x 1  ay 1  bz 5  c

 x 1  6y 2  z 5  0

 x 1  5y 1  z 5  0

cb,a,


